If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+5t-9=0
a = 1; b = 5; c = -9;
Δ = b2-4ac
Δ = 52-4·1·(-9)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{61}}{2*1}=\frac{-5-\sqrt{61}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{61}}{2*1}=\frac{-5+\sqrt{61}}{2} $
| 1/2(2-6x)=x+13 | | 2y-9y+17=-4 | | 5x/4=8=10 | | x(x+100)=5600 | | 6+8(-2-7x)=326 | | 4x^2-4x+14=0 | | 15(7)+4y-13=180 | | 2/3m/5=31/15 | | 8x-9=15x= | | 2m-5-5=14 | | n+0.3/n-3.2=-1/5 | | 24/5-z+4=4/z-1 | | 1.2+0.05x=1.202 | | -49/7=a÷7/6 | | 5x=20*3+20= | | -2/3(6r-18)=132 | | 5x=20*30+20= | | 0=4r^2-52+169 | | 5x=20x30+20= | | 3a=27a-2 | | 9+3x+1x=67 | | x/9=8/16 | | 9x+27x-9=9(4x+7) | | -18+5x=12x+1 | | 4x+11=3 | | 6x+14x-6=5(4x+5) | | 12/7(x-5)=8+24x | | 1x-3=5.2 | | 43+62+57+x=55/4 | | x=17=29 | | -2+5+7n=10n-9 | | 5-6c=6-5c |